

12 December 2011

1 2 3 EMA/CVMP/VICH/858875/2011

Committee for Medicinal Products for Veterinary Use (CVMP)

VICH GL51: Quality: statistical evaluation of stability data 4

Draft 5

Draft agreed by VICH Steering Committee	17 November 2011	
Adoption by CVMP for release for consultation	8 December 2011	
End of consultation (deadline for comments)	12 June 2012	

Comments should be provided using this template. The completed comments form should be sent to vetguidelines@ema.europa.eu

7 Westferry Circus • Canary Wharf • London E14 4HB • United Kingdom **Telephone** +44 (0)20 7418 8400 **Facsimile** +44 (0)20 7418 8416 E-mail info@ema.europa.eu Website www.ema.europa.eu

An agency of the European Union

© European Medicines Agency, 2011. Reproduction is authorised provided the source is acknowledged.

ICH Internat	tional Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal
	nonal cooperation on mannomisation of reclinical kequitements for kegistration of veterinary medicinal
	November 2011
	For consultation at Step 4
	•
	QUALITY:
0 -1-10	
SIAIIS	FICAL EVALUATION OF STABILITY DATA
	Recommended for Consultation
	at Step 4 of the VICH Process
	on 17 November 2011
	by the VICH Steering Committee
THIS GUIDELINE	HAS BEEN DEVELOPED BY THE APPROPRIATE VICH EXPERT WORKING GROUP
AND IS SUBJECT 1	TO CONSULTATION BY THE PARTIES, IN ACCORDANCE WITH THE VICH PROCESS.
AT STEP 7 OF T	HE PROCESS THE FINAL DRAFT WILL BE RECOMMENDED FOR ADOPTION TO THE
REG	JULATORY BODIES OF THE EUROPEAN UNION. JAPAN AND THE USA.

4	1		
1	n		

TABLE OF CONTENTS

1.	INT	RODUCTION
	1.1	Objectives of the Guideline
	1.2	Background
	1.3	Scope of the Guideline
2.	GUI	DELINES
	2.1	General Principles
	2.2	Data presentation
	2.3	Extrapolation
	2.4	Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Veterinary Medicinal Products Intended for Room Temperature Storage
	2.5	Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Veterinary Medicinal Products Intended for Storage Below Room Temperature9
	2.6	General Statistical Approaches
3.	APF	PENDICES 11
	Арр	endix A: Decision Tree for Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Veterinary Medicinal Products (excluding Frozen Products)
	App	endix B: Examples of Statistical Approaches to Stability Data Analysis

1. INTRODUCTION

44

45

1.1 Objectives of the Guideline

This guideline is intended to provide recommendations on how to use stability data generated 46 47 in accordance with the principles detailed in the VICH guideline "GL3(R) Stability Testing of 48 New Veterinary Drug Substances and Medicinal Products" (hereafter referred to as the parent 49 guideline) to propose a retest period or shelf life in a registration application. This guideline 50 describes when and how extrapolation can be considered when proposing a retest period for a 51 drug substance or a shelf life for a veterinary medicinal product that extends beyond the 52 period covered by "available data from the stability study under the long-term storage condition" (hereafter referred to as long-term data). Application of this guideline is entirely 53 54 optional and it is up to the Applicant to decide whether or not to use statistical analysis to 55 support the claimed retest period/shelf-life.

56

1.2 Background

57

The guidance on the evaluation and statistical analysis of stability data provided in the parent guideline is brief in nature and limited in scope. The parent guideline states that regression analysis is an appropriate approach to analyzing quantitative stability data for retest period or shelf life estimation and recommends that a statistical test for batch poolability be performed using a level of significance of 0.25. However, the parent guideline includes few details and does not cover situations where multiple factors are involved in a full- or reduced-design study.

65

This guideline is an expansion of the guidance presented in the Evaluation sections of the
parent guideline.

1.3 Scope of the Guideline

69

This guideline addresses the evaluation of stability data that should be submitted in registration applications for new molecular entities and associated veterinary medicinal products. The guideline provides recommendations on establishing retest periods and shelf lives for drug substances and veterinary medicinal products intended for storage at or below "room temperature"*. It covers stability studies using single- or multi-factor designs and full or reduced designs.

*Note: The term "room temperature" refers to the general customary environment and shouldnot be inferred to be the storage statement for labeling.

79

VICH GL39 and GL40 should be consulted for recommendations on the setting and
 justification of acceptance criteria, and VICH GL45 should be referenced for
 recommendations on the use of full- versus reduced-design studies.

83

2. GUIDELINES

84

85 2.1 General Principles

86

The design and execution of formal stability studies should follow the principles outlined in the parent guideline. The purpose of a stability study is to establish, based on testing a minimum of three batches of the drug substance or the veterinary medicinal product, a retest period or shelf life and label storage instructions applicable to all future batches manufactured 91 and packaged under similar circumstances. The degree of variability of individual batches

92 affects the confidence that a future production batch will remain within acceptance criteria93 throughout its retest period or shelf life.

94

95 Although normal manufacturing and analytical variations are to be expected, it is important 96 that the veterinary medicinal product be formulated with the intent to provide 100 percent of 97 the labeled amount of the drug substance at the time of batch release. If the assay values of 98 the batches used to support the registration application are higher than 100 percent of label 99 claim at the time of batch release, after taking into account manufacturing and analytical 100 variations, the shelf life proposed in the application can be overestimated. On the other hand, 101 if the assay value of a batch is lower than 100 percent of label claim at the time of batch 102 release, it might fall below the lower acceptance criterion before the end of the proposed shelf 103 life.

104

A systematic approach should be adopted in the presentation and evaluation of the stability information. The stability information should include, as appropriate, results from the physical, chemical, biological, and microbiological tests, including those related to particular attributes of the dosage form (for example, dissolution rate for solid oral dosage forms). The adequacy of the mass balance should be assessed. Factors that can cause an apparent lack of mass balance should be considered, including, for example, the mechanisms of degradation and the stability-indicating capability and inherent variability of the analytical procedures.

112

The basic concepts of stability data evaluation are the same for single- versus multi-factor studies and for full- versus reduced-design studies. Data from formal stability studies and, as appropriate, supporting data should be evaluated to determine the critical quality attributes likely to influence the quality and performance of the drug substance or the veterinary medicinal product. Each attribute should be assessed separately, and an overall assessment should be made of the findings for the purpose of proposing a retest period or shelf life. The retest period or shelf life proposed should not exceed that predicted for any single attribute.

120

121 The decision tree in Appendix A outlines a stepwise approach to stability data evaluation and 122 when and how much extrapolation can be considered for a proposed retest period or shelf life. 123 Appendix B provides (1) information on how to analyze long-term data for appropriate 124 quantitative test attributes from a study with a multi-factor, full or reduced design, (2) 125 information on how to use regression analysis for retest period or shelf life estimation, and (3) 126 examples of statistical procedures to determine poolability of data from different batches or 127 other factors. Additional guidance can be found in the references listed; however, the 128 examples and references do not cover all applicable statistical approaches.

129

130 In general, certain quantitative chemical attributes (e.g., assay, degradation products, 131 preservative content) for a drug substance or a veterinary medicinal product can be assumed to follow zero-order kinetics during long-term storage¹. Data for these attributes are therefore 132 133 amenable to the type of statistical analysis described in Appendix B, including linear regression and poolability testing. Although the kinetics of other quantitative attributes (e.g., 134 pH, dissolution) is generally not known, the same statistical analysis can be applied, if 135 136 appropriate. Qualitative attributes and microbiological attributes are not amenable to this kind 137 of statistical analysis.

138

139 The recommendations on statistical approaches in this guideline are not intended to imply that 140 use of statistical evaluation is preferred when it can be justified to be unnecessary. However,

141 statistical analysis can be useful in supporting the extrapolation of retest periods or shelf lives

in certain situations and can be called for to verify the proposed retest periods or shelf lives inother cases.

144

2.2 Data presentation

145 146 Data for all attributes should be presented in an appropriate format (e.g., tabular, graphical, 147 narrative) and an evaluation of such data should be included in the application. The values of 148 quantitative attributes at all time points should be reported as measured (e.g., assay as percent 149 of label claim). If a statistical analysis is performed, the procedure used and the assumptions 150 underlying the model should be stated and justified. A tabulated summary of the outcome of 151 statistical analysis and/or graphical presentation of the long-term data should be included.

152

2.3 Extrapolation

153

154 Extrapolation is the practice of using a known data set to infer information about future data. 155 Extrapolation to extend the retest period or shelf life beyond the period covered by long-term 156 data can be proposed in the application, particularly if no significant change is observed at the 157 accelerated condition. Whether extrapolation of stability data is appropriate depends on the 158 extent of knowledge about the change pattern, the goodness of fit of any mathematical model, 159 and the existence of relevant supporting data. Any extrapolation should be performed such 160 that the extended retest period or shelf life will be valid for a future batch released with test 161 results close to the release acceptance criteria.

162

163 An extrapolation of stability data assumes that the same change pattern will continue to apply 164 beyond the period covered by long-term data. The correctness of the assumed change pattern 165 is critical when extrapolation is considered. When estimating a regression line or curve to fit 166 the long-term data, the data themselves provide a check on the correctness of the assumed 167 change pattern, and statistical methods can be applied to test the goodness of fit of the data to 168 the assumed line or curve. No such internal check is possible beyond the period covered by 169 long-term data. Thus, a retest period or shelf life granted on the basis of extrapolation should always be verified by additional long-term stability data as soon as these data become 170 171 available. Care should be taken to include in the protocol for commitment batches a time 172 point that corresponds to the end of the extrapolated retest period or shelf life.

173

2.4 Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Veterinary Medicinal Products Intended for Room Temperature Storage

174

175 A systematic evaluation of the data from formal stability studies should be performed as illustrated in this section. Stability data for each attribute should be assessed sequentially. For 176 177 drug substances or veterinary medicinal products intended for storage at room temperature, 178 the assessment should begin with any significant change at the accelerated condition and, if 179 appropriate, at the intermediate condition, and progress through the trends and variability of 180 the long-term data. The circumstances are delineated under which extrapolation of retest 181 period or shelf life beyond the period covered by long-term data can be appropriate. A 182 decision tree is provided in Appendix A as an aid.

182

2.4.1 No significant change at accelerated condition

184

185 Where no significant change occurs at the accelerated condition, the retest period or shelf life186 would depend on the nature of the long-term and accelerated data.

2.4.1.1 Long-term and accelerated data showing little or no change over time and little or no variability

187

188 Where the long-term data and accelerated data for an attribute show little or no change over 189 time and little or no variability, it might be apparent that the drug substance or the veterinary 190 medicinal product will remain well within the acceptance criteria for that attribute during the 191 proposed retest period or shelf life. In these circumstances, a statistical analysis is normally 192 considered unnecessary but justification for the omission should be provided. Justification can 193 include a discussion of the change pattern or lack of change, relevance of the accelerated data, 194 mass balance, and/or other supporting data as described in the parent guideline. Extrapolation 195 of the retest period or shelf life beyond the period covered by long-term data can be proposed. The proposed retest period or shelf life can be up to twice, but should not be more than 12 196 197 months beyond, the period covered by long-term data.

198

199

2.4.1.2 Long-term or accelerated data showing change over time and/or variability

200 If the long-term or accelerated data for an attribute show change over time and/or variability 201 within a factor or among factors, statistical analysis of the long-term data can be useful in 202 establishing a retest period or shelf life. Where there are differences in stability observed 203 among batches or among other factors (e.g., strength, container size and/or fill) or factor 204 combinations (e.g., strength-by-container size and/or fill) that preclude the combining of data, 205 the proposed retest period or shelf life should not exceed the shortest period supported by any 206 batch, other factor, or factor combination. Alternatively, where the differences are readily 207 attributed to a particular factor (e.g., strength), different shelf lives can be assigned to 208 different levels within the factor (e.g., different strengths). A discussion should be provided to 209 address the cause for the differences and the overall significance of such differences on the 210 product. Extrapolation beyond the period covered by long-term data can be proposed; 211 however, the extent of extrapolation would depend on whether long-term data for the attribute 212 are amenable to statistical analysis.

- 213 214
- Data not amenable to statistical analysis
- Where long-term data are not amenable to statistical analysis, but relevant supporting data are provided, the proposed retest period or shelf life can be up to one-and-a-half times, but should not be more than 6 months beyond, the period covered by long-term data. Relevant supporting data include satisfactory long-term data from development batches that are (1) made with a closely related formulation to, (2) manufactured on a smaller scale than, or (3) packaged in a container closure system similar to, that of the primary stability batches.
 - 221 222 223

224

• Data amenable to statistical analysis

If long-term data are amenable to statistical analysis but no analysis is performed, the extent of extrapolation should be the same as when data are not amenable to statistical analysis. However, if a statistical analysis is performed, it can be appropriate to propose a retest period or shelf life of up to twice, but not more than 12 months beyond, the period covered by longterm data, when the proposal is backed by the result of the analysis and relevant supporting data.

2.4.2 Significant change at accelerated condition

Where significant change* occurs at the accelerated condition, the retest period or shelf life
would depend on the outcome of stability testing at the intermediate condition, as well as at
the long-term condition.

236

*Note: The following physical changes can be expected to occur at the accelerated condition
and would not be considered significant change that calls for intermediate testing if there is no
other significant change:

- softening of a suppository that is designed to melt at 37°C, if the melting point is clearly demonstrated,
- failure to meet acceptance criteria for dissolution for 12 units of a gelatin capsule or gel-coated tablet if the failure can be unequivocally attributed to cross-linking.
- 244

However, if phase separation of a semi-solid dosage form occurs at the accelerated condition,
testing at the intermediate condition should be performed. Potential interaction effects should
also be considered in establishing that there is no other significant change.

248

2.4.2.1 No significant change at intermediate condition

249

If there is no significant change at the intermediate condition, extrapolation beyond the period covered by long-term data can be proposed; however, the extent of extrapolation would depend on whether long-term data for the attribute are amenable to statistical analysis.

253 254

255

• Data not amenable to statistical analysis

When the long-term data for an attribute are not amenable to statistical analysis, the proposed
retest period or shelf life can be up to 3 months beyond the period covered by long-term data,
if backed by relevant supporting data.

- 259 260
- Data amenable to statistical analysis

When the long-term data for an attribute are amenable to statistical analysis but no analysis is performed, the extent of extrapolation should be the same as when data are not amenable to statistical analysis. However, if a statistical analysis is performed, the proposed retest period or shelf life can be up to one-and-half times, but should not be more than 6 months beyond, the period covered by long-term data, when backed by statistical analysis and relevant supporting data.

268

2.4.2.2 Significant change at intermediate condition

269

Where significant change occurs at the intermediate condition, the proposed retest period or shelf life should not exceed the period covered by long-term data. In addition, a retest period or shelf life shorter than the period covered by long-term data could be called for.

2.5 Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Medicinal Products Intended for Storage Below Room Temperature

274

275

273

2.5.1 Drug substances or veterinary medicinal products intended for storage in a refrigerator

Data from drug substances or veterinary medicinal products intended to be stored in a refrigerator should be assessed according to the same principles as described in Section 2.4 for drug substances or veterinary medicinal products intended for room temperature storage, except where explicitly noted in the section below. The decision tree in Appendix A can be used as an aid.

281

283

282 2.5.1.1 No significant change at accelerated condition

Where no significant change occurs at the accelerated condition, extrapolation of retest period or shelf life beyond the period covered by long-term data can be proposed based on the principles outlined in Section 2.4.1, except that the extent of extrapolation should be more limited.

288

If the long-term and accelerated data show little change over time and little variability, the proposed retest period or shelf life can be up to one-and-a-half times, but should not be more than 6 months beyond, the period covered by long-term data normally without the support of statistical analysis.

293

Where the long-term or accelerated data show change over time and/or variability, the proposed retest period or shelf life can be up to 3 months beyond the period covered by longterm data if (1) the long-term data are amenable to statistical analysis but a statistical analysis is not performed, or (2) the long-term data are not amenable to statistical analysis but relevant supporting data are provided.

299

Where the long-term or accelerated data show change over time and/or variability, the proposed retest period or shelf life can be up to one-and-a-half times, but should not be more than 6 months beyond, the period covered by long-term data if (1) the long-term data are amenable to statistical analysis and a statistical analysis is performed, and (2) the proposal is backed by the result of the analysis and relevant supporting data.

306 307

2.5.1.2 Significant change at accelerated condition

308 If significant change occurs between 3 and 6 months' testing at the accelerated storage 309 condition, the proposed retest period or shelf life should be based on the long-term data. 310 Extrapolation is not considered appropriate. In addition, a retest period or shelf life shorter 311 than the period covered by long-term data could be called for. If the long-term data show 312 variability, verification of the proposed retest period or shelf life by statistical analysis can be 313 appropriate.

314

315 If significant change occurs within the first 3 months' testing at the accelerated storage 316 condition, the proposed retest period or shelf life should be based on long-term data. 317 Extrapolation is not considered appropriate. A retest period or shelf life shorter than the 318 period covered by long-term data could be called for. If the long-term data show variability, 319 verification of the proposed retest period or shelf life by statistical analysis can be 320 appropriate. In addition, a discussion should be provided to address the effect of short-term excursions outside the label storage condition (e.g., during shipping or handling). This
 discussion can be supported, if appropriate, by further testing on a single batch of the drug
 substance or the veterinary medicinal product at the accelerated condition for a period shorter
 than 3 months.

325

2.5.2 Drug substances or veterinary medicinal products intended for storage in a freezer

- For drug substances or veterinary medicinal products intended for storage in a freezer, the retest period or shelf life should be based on long-term data. In the absence of an accelerated storage condition for drug substances or veterinary medicinal products intended to be stored in a freezer, testing on a single batch at an elevated temperature (e.g., $5^{\circ}C \pm 3^{\circ}C$ or $25^{\circ}C \pm$ $2^{\circ}C$) for an appropriate time period should be conducted to address the effect of short-term excursions outside the proposed label storage condition (e.g., during shipping or handling).
- 333

334

2.5.3 Drug substances or veterinary medicinal products intended for storage below -20 $^{\circ}C$

For drug substances or veterinary medicinal products intended for storage below -20°C, the retest period or shelf life should be based on long-term data and should be assessed on a caseby-case basis.

338

2.6 General Statistical Approaches

339

Where applicable, an appropriate statistical method should be employed to analyze the longterm primary stability data in an original application. The purpose of this analysis is to establish, with a high degree of confidence, a retest period or shelf life during which a quantitative attribute will remain within acceptance criteria for all future batches manufactured, packaged, and stored under similar circumstances.

345

In cases where a statistical analysis was employed to evaluate long-term data due to a change
over time and/or variability, the same statistical method should also be used to analyse data
from commitment batches to verify or extend the originally approved retest period or shelf
life.

Regression analysis is considered an appropriate approach to evaluating the stability data for a quantitative attribute and establishing a retest period or shelf life. The nature of the relationship between an attribute and time will determine whether data should be transformed for linear regression analysis. The relationship can be represented by a linear or non-linear function on an arithmetic or logarithmic scale. In some cases, a non-linear regression can better reflect the true relationship.

357

An appropriate approach to retest period or shelf life estimation is to analyze a quantitative attribute (e.g., assay, degradation products) by determining the earliest time at which the 95 percent confidence limit for the mean intersects the proposed acceptance criterion.

361

For an attribute known to decrease with time, the lower one-sided 95 percent confidence limit should be compared to the acceptance criterion. For an attribute known to increase with time, the upper one-sided 95 percent confidence limit should be compared to the acceptance criterion. For an attribute that can either increase or decrease, or whose direction of change is not known, two-sided 95 percent confidence limits should be calculated and compared to the upper and lower acceptance criteria.

368

The statistical method used for data analysis should take into account the stability study design to provide a valid statistical inference for the estimated retest period or shelf life. The approach described above can be used to estimate the retest period or shelf life for a single batch or for multiple batches when the data are combined after an appropriate statistical test. Examples of statistical approaches to the analysis of stability data from single or multi-factor, full- or reduced-design studies are included in Appendix B. References to current literature sources can be found in Appendix B.6.

376 APPENDICES

377

Appendix A: Decision Tree for Data Evaluation for Retest Period or Shelf Life Estimation for Drug Substances or Veterinary Medicinal Products (excluding Frozen Products)

Appendix B: Examples of Statistical Approaches to Stability Data Analysis

Linear regression, poolability tests, and statistical modeling, described below, are examples of
statistical methods and procedures that can be used in the analysis of stability data that are
amenable to statistical analysis for a quantitative attribute for which there is a proposed
acceptance criterion.

398

399

B.1 Data Analysis for a Single Batch

- 400 In general, the relationship between certain quantitative attributes and time is assumed to be linear¹. Figure 1 shows the regression line for assay of a veterinary medicinal product with 401 402 upper and lower acceptance criteria of 105 percent and 95 percent of label claim, respectively, 403 with 12 months of long-term data and a proposed shelf life of 24 months. In this example, 404 two-sided 95 percent confidence limits for the mean are applied because it is not known ahead 405 of time whether the assay would increase or decrease with time (e.g., in the case of an 406 aqueous-based product packaged in a semi-permeable container). The lower confidence limit 407 intersects the lower acceptance criterion at 30 months, while the upper confidence limit does 408 not intersect with the upper acceptance criterion until later. Therefore, the proposed shelf life 409 of 24 months can be supported by the statistical analysis of the assay, provided the 410 recommendations in Sections 2.4 and 2.5 are followed.
- 411

When data for an attribute with only an upper or a lower acceptance criterion are analyzed,
the corresponding one-sided 95 percent confidence limit for the mean is recommended.
Figure 2 shows the regression line for a degradation product in a veterinary medicinal product

- 414 Figure 2 shows the regression line for a degradation product in a veterinary medicinal product 415 with 12 months of long-term data and a proposed shelf life of 24 months, where the 416 acceptance criterion is not more than 1.4 percent. The upper one-sided 95 percent confidence 417 limit for the mean intersects the acceptance criterion at 31 months. Therefore, the proposed
- 417 Initial for the mean intersects the acceptance criterion at 51 months. Therefore, the proposed 418 shelf life of 24 months can be supported by statistical analysis of the degradation product 419 data, provided the recommendations in Sections 2.4 and 2.5 are followed.
- 420

421 If the above approach is used, the mean value of the quantitative attribute (e.g., assay,
422 degradation products) can be expected to remain within the acceptance criteria through the
423 end of the retest period or shelf life at a confidence level of 95 percent.

424

The approach described above can be used to estimate the retest period or shelf life for a single batch, individual batches, or multiple batches when combined after appropriate statistical tests described in Sections B.2 through B.5.

428

B.2 Data Analysis for One-Factor, Full-Design Studies

429

For a drug substance or for a veterinary medicinal product available in a single strength and a single container size and/or fill, the retest period or shelf life is generally estimated based on the stability data from a minimum of three batches. When analyzing data from such onefactor, batch-only, full-design studies, two statistical approaches can be considered.

The objective of the first approach is to determine whether the data from all batches supportthe proposed retest period or shelf life.

436 The objective of the second approach, testing for poolability, is to determine whether the data

- 437 from different batches can be combined for an overall estimate of a single retest period or
- 438 shelf life.
- 439

B.2.1 Evaluating whether all batches support the proposed retest period or shelf life

440 441 The objective of this approach is to evaluate whether the estimated retest periods or shelf lives 442 from all batches are longer than the one proposed. Retest periods or shelf lives for individual 443 batches should first be estimated using the procedure described in Section B.1 with individual 444 intercepts, individual slopes, and the pooled mean square error calculated from all batches. If 445 each batch has an estimated retest period or shelf life longer than that proposed, the proposed 446 retest period or shelf life will generally be considered appropriate, as long as the guidance for 447 extrapolation in Sections 2.4 and 2.5 is followed. There is generally no need to perform 448 poolability tests or identify the most reduced model. If, however, one or more of the estimated 449 retest periods or shelf lives are shorter than that proposed, poolability tests can be performed 450 to determine whether the batches can be combined to estimate a longer retest period or shelf 451 life.

452

Alternatively, the above approach can be taken during the pooling process described in Section B.2.2. If the regression lines for the batches are found to have a common slope and the estimated retest periods or shelf lives based on the common slope and individual intercepts are all longer than the proposed retest period or shelf life, there is generally no need to continue to test the intercepts for poolability.

B.2.2 Testing for poolability of batches

459

460

B.2.2.1 Analysis of covariance

461 Before pooling the data from several batches to estimate a retest period or shelf life, a 462 preliminary statistical test should be performed to determine whether the regression lines 463 from different batches have a common slope and a common time-zero intercept. Analysis of covariance (ANCOVA) can be employed, where time is considered the covariate, to test the 464 465 differences in slopes and intercepts of the regression lines among batches. Each of these tests 466 should be conducted using a significance level of 0.25 to compensate for the expected low power of the design due to the relatively limited sample size in a typical formal stability 467 468 study.

469

470 If the test rejects the hypothesis of equality of slopes (i.e., if there is a significant difference in 471 slopes among batches), it is not considered appropriate to combine the data from all batches. 472 The retest periods or shelf lives for individual batches in the stability study can be estimated 473 by applying the approach described in Section B.1 using individual intercepts and individual 474 slopes and the pooled mean square error calculated from all batches. The shortest estimate 475 among the batches should be chosen as the retest period or shelf life for all batches.

476

477 If the test rejects the hypothesis of equality of intercepts but fails to reject that the slopes are 478 equal (i.e., if there is a significant difference in intercepts but no significant difference in 479 slopes among the batches), the data can be combined for the purpose of estimating the 480 common slope. The retest periods or shelf lives for individual batches in the stability study 481 should be estimated by applying the approach described in Section B.1, using the common 482 slope and individual intercepts. The shortest estimate among the batches should be chosen as 483 the retest period or shelf life for all batches.

484

485 If the tests for equality of slopes and equality of intercepts do not result in rejection at a level 486 of significance of 0.25 (i.e., if there is no significant difference in slope and intercepts among 487 the batches), the data from all batches can be combined. A single retest period or shelf life 488 can be estimated from the combined data by using the approach described in Section B.1 and 489 applied to all batches. The estimated retest period or shelf life from the combined data is
490 usually longer than that from individual batches because the width of the confidence limit(s)
491 for the mean will become narrower as the amount of data increases when batches are
492 combined.

493

494 The pooling tests described above should be performed in a proper order such that the slope 495 terms are tested before the intercept terms. The most reduced model (i.e., individual slopes, 496 common slope with individual intercepts, or common slope with common intercept, as 497 appropriate) can be selected for retest period or shelf life estimation.

498

499

B.2.2.2 Other methods

Statistical procedures²⁻⁶ other than those described above can be used in retest period or shelf 500 life estimation. For example, if it is possible to decide in advance the acceptable difference in 501 502 slope or in mean retest period or shelf life among batches, an appropriate procedure for 503 assessing the equivalence in slope or in mean retest period or shelf life can be used to 504 determine the data poolability. However, such a procedure should be prospectively defined, 505 evaluated, and justified and, where appropriate, discussed with the regulatory authority. A 506 simulation study can be useful, if applicable, to demonstrate that the statistical properties of 507 the alternative procedure selected are appropriate⁷.

508

B.3 Data Analysis for Multi-Factor, Full-Design Studies

509

510 The stability of the veterinary medicinal product could differ to a certain degree among 511 different factor combinations in a multi-factor, full-design study. Two approaches can be 512 considered when analyzing such data.

513 The objective of the first approach is to determine whether the data from all factor 514 combinations support the proposed shelf life.

515 The objective of the second approach, testing for poolability, is to determine whether the data 516 from different factor combinations can be combined for an overall estimate of a single shelf 517 life.

518

B.3.1 Evaluating whether all factor combinations support the proposed shelf life

519

The objective of this approach is to evaluate whether the estimated shelf lives from all factor

The objective of this approach is to evaluate whether the estimated shelf lives from all factor combinations are longer than the one proposed. A statistical model that includes all appropriate factors and factor combinations should be constructed as described in Section B.3.2.2.1, and the shelf life should be estimated for each level of each factor and factor combination.

525

526 If all shelf lives estimated by the original model are longer than the proposed shelf life, further model building is considered unnecessary and the proposed shelf life will generally be 527 528 appropriate as long as the guidance in Sections 2.4 and 2.5 is followed. If one or more of the estimated shelf lives fall short of the proposed shelf life, model building as described in 529 530 Section B.3.2.2.1 can be employed. However, it is considered unnecessary to identify the final 531 model before evaluating whether the data support the proposed shelf life. Shelf lives can be 532 estimated at each stage of the model building process, and if all shelf lives at any stage are 533 longer than the one proposed, further attempts to reduce the model are considered 534 unnecessary.

- 535
- 536 This approach can simplify the data analysis of a complicated multi-factor stability study 537 compared to the data analysis described in Section B.3.2.2.1.

B.3.2 Testing for poolability

539
540 The stability data from different combinations of factors should not be combined unless
541 supported by statistical tests for poolability.

542

B.3.2.1 Testing for poolability of batch factor only

543

544 If each factor combination is considered separately, the stability data can be tested for 545 poolability of batches only, and the shelf life for each non-batch factor combination can be 546 estimated separately by applying the procedure described in Section B.2. For example, for a 547 veterinary medicinal product available in two strengths and four container sizes, eight sets of 548 data from the 2x4 strength-size combinations can be analyzed and eight separate shelf lives 549 should be estimated accordingly. If a single shelf life is desired, the shortest estimated shelf 550 life among all factor combinations should become the shelf life for the product. However, 551 this approach does not take advantage of the available data from all factor combinations, thus

552 generally resulting in shorter shelf lives than does the approach in Section B.3.2.2.

B.3.2.2 Testing for poolability of all factors and factor combinations

554

553

555 If the stability data are tested for poolability of all factors and factor combinations and the 556 results show that the data can be combined, a single shelf life longer than that estimated based 557 on individual factor combinations is generally obtainable. The shelf life is longer because the 558 width of the confidence limit(s) for the mean will become narrower as the amount of data 559 increases when batches, strengths, container sizes and/or fills, etc. are combined. 560

B.3.2.2.1 Analysis of covariance

561

Analysis of covariance can be employed to test the difference in slopes and intercepts of the regression lines among factors and factor combinations^{7, 8}. The purpose of the procedure is to determine whether data from multiple factor combinations can be combined for the estimation of a single shelf life.

567 The full statistical model should include the intercept and slope terms of all main effects and 568 interaction effects and a term reflecting the random error of measurement. If it can be 569 justified that the higher order interactions are very small, there is generally no need to include 570 these terms in the model. In cases where the analytical results at the initial time point are 571 obtained from the finished dosage form prior to its packaging, the container intercept term can 572 be excluded from the full model because the results are common among the different 573 container sizes and/or fills.

574

575 The tests for poolability should be specified to determine whether there are statistically 576 significant differences among factors and factor combinations. Generally, the pooling tests 577 should be performed in a proper order such that the slope terms are tested before the intercept terms and the interaction effects are tested before the main effects. For example, the tests can 578 579 start with the slope and then the intercept terms of the highest order interaction, and proceed 580 to the slope and then the intercept terms of the simple main effects. The most reduced model, 581 obtained when all remaining terms are found to be statistically significant, can be used to 582 estimate the shelf lives.

583

All tests should be conducted using appropriate levels of significance. It is recommended that a significance level of 0.25 be used for batch-related terms, and a significance level of 0.05 be used for non-batch-related terms. If the tests for poolability show that the data from different
factor combinations can be combined, the shelf life can be estimated according to the
procedure described in Section B.1 using the combined data.

589

590 If the tests for poolability show that the data from certain factors or factor combinations 591 should not be combined, either of two alternatives can be applied: (1) a separate shelf life can 592 be estimated for each level of the factors and of the factor combinations remaining in the 593 model; or (2) a single shelf life can be estimated based on the shortest estimated shelf life 594 among all levels of factors and factor combinations remaining in the model.

595

B.3.2.2.2 Other methods

Alternative statistical procedures²⁻⁶ to those described above can be applied. For example, an appropriate procedure for assessing the equivalence in slope or in mean shelf life can be used to determine the data poolability. However, such a procedure should be prospectively defined, evaluated, properly justified, and, where appropriate, discussed with the regulatory authority. A simulation study can be useful, if applicable, to demonstrate that the statistical properties of the alternative procedure selected are appropriate⁷.

603

B.4 Data Analysis For Bracketing Design Studies

604

605 The statistical procedures described in Section B.3 can be applied to the analysis of stability data obtained from a bracketing design study. For example, for a veterinary medicinal 606 product available in three strengths (S1, S2, and S3) and three container sizes (P1, P2, and P3) 607 608 and studied according to a bracketing design where only the two extremes of the container 609 sizes (P1 and P3) are tested, six sets of data from the 3x2 strength-size combinations will be 610 obtained. The data can be analyzed separately for each of the six combinations for shelf life 611 estimation according to Section B.3.2.1, or tested for poolability prior to shelf life estimation 612 according to Section B.3.2.2.

613

The bracketing design assumes that the stability of the intermediate strengths or sizes is represented by the stability at the extremes. If the statistical analysis indicates that the stability of the extreme strengths or sizes is different, the intermediate strengths or sizes should be considered no more stable than the least stable extreme. For example, if P1 from the above bracketing design is found to be less stable than P3, the shelf life for P2 should not exceed that for P1. No interpolation between P1 and P3 should be considered.

620 B.5 Data Analysis For Matrixing Design Studies

621

622 A matrixing design has only a fraction of the total number of samples tested at any specified 623 time point. Therefore, it is important to ascertain that all factors and factor combinations that 624 can have an impact on shelf life estimation have been appropriately tested. For a meaningful 625 interpretation of the study results and shelf life estimation, certain assumptions should be 626 made and justified. For instance, the assumption that the stability of the samples tested represents the stability of all samples should be valid. In addition, if the design is not 627 628 balanced, some factors or factor interactions might not be estimable. Furthermore, for 629 different levels of factor combinations to be poolable, it might have to be assumed that the 630 higher order factor interactions are negligible. Because it is usually impossible to statistically 631 test the assumption that the higher order terms are negligible, a matrixing design should be 632 used only when it is reasonable to assume that these interactions are indeed very small, based 633 on supporting data.

634

635 The statistical procedure described in Section B.3 can be applied to the analysis of stability 636 data obtained from a matrixing design study. The statistical analysis should clearly identify 637 the procedure and assumptions used. For instance, the assumptions underlying the model in 638 which interaction terms are negligible should be stated. If a preliminary test is performed for 639 the purpose of eliminating factor interactions from the model, the procedure used should be 640 provided and justified. The final model on which the estimation of shelf life will be based 641 should be stated. The estimation of shelf life should be performed for each of the terms 642 remaining in the model. The use of a matrixing design can result in an estimated shelf life 643 shorter than that resulting from a full design.

644

647

648

654

657

660

664

645 Where bracketing and matrixing are combined in one design, the statistical procedure 646 described in Section B.3 can be applied.

B.6 References

- 649 1. Carstensen, J.T., "Stability and Dating of Solid Dosage Forms"
 650 *Pharmaceutics of Solids and Solid Dosage Forms*, Wiley-Interscience, 182-185, 1977
 651
- 652 2. Ruberg, S.J. and Stegeman, J.W., "Pooling Data for Stability Studies: Testing the
 653 Equality of Batch Degradation Slopes" *Biometrics*, 47:1059-1069, 1991
- 655 3. Ruberg, S.J. and Hsu, J.C., "Multiple Comparison Procedures for Pooling Batches in 656 Stability Studies" *Technometrics*, 34:465-472, 1992
- 4. Shao, J. and Chow, S.C., "Statistical Inference in Stability Analysis" *Biometrics*, 50:753-763, 1994
- 661 5. Murphy, J.R. and Weisman, D., "Using Random Slopes for Estimating Shelf-life"
 662 *Proceedings of American Statistical Association of the Biopharmaceutical Section*, 196-200,
 663 1990
- 665 6. Yoshioka, S., Aso, Y, and Kojima, S., "Assessment of Shelf-life Equivalence of 666 Pharmaceutical Products" *Chem. Pharm. Bull.*, 45:1482-1484, 1997
- 667
 668 7. Chen, J.J., Ahn, H., and Tsong, Y., "Shelf-life Estimation for Multifactor Stability
 669 Studies" *Drug Inf. Journal*, 31:573-587, 1997
- 670 671 ° Estration
- 671 8. Fairweather, W., Lin, T.D., and Kelly, R., "Regulatory, Design, and Analysis Aspects of
- 672 Complex Stability Studies" J. Pharm. Sci., 84:1322-1326, 1995

675 Figure 1

680 Figure 2681

